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so p is certainly null-homologous, however, this element does not equal 1
in 7rl(.°), since irl(O) is the free group generated by a, b.

EXERCISE 5.1.4.1. Show that waba-'b-'w-' is freely equivalent to a product of com-
mutators, so that the commutator subgroup of a group G is in fact generated by the
commutators of G.

Give an example to show that the commutators of generators of G do not in general
suffice to generate its commutator subgroup.

EXERCISE 5.1.4.2. If p is the boundary of a singular perforated orientablc surface in W
prove that [p] is in the commutator subgroup of 7r, (W).

5.2 The Structure Theorem for Finitely Generated
Abelian Groups

5.2.1 Introduction

The fundamental theorem for finite abelian groups appears in Kronecker
1870. In this paper, Kronecker gives what we would recognize as the abstract
definition of a finite abelian group-a finite set closed under a commutative,
associative binary operation f, with the property that a' 0 a" implies
[(a, a') - f (a, a")-then proves that such a group is a direct product of
cyclic groups. Kronecker's proof is so brief and lucid we shall reproduce it
almost verbatim below.

A different proof, using matrices, was discovered by Poincare' 1900.
Poincare's method is actually intended to compute the Betti number and
torsion coefficients (of given dimension) of a complex, but this is tantamount
to decomposing a finitely generated abelian group into certain cyclic factors,
the number of infinite cyclic factors being the Betti number, and the orders
of the finite factors being the torsion coefficients. His result is therefore a
generalization of Kronecker's-what we now know as the structure theorem
for finitely generated abelian groups-however, we shall see how Kronecker's
proof can be augmented to deal with elements of infinite order. (This seems
to have first been done by Noether 1926.)

Kronecker's proof begins with the following remarks.
(1) The exponents k of all powers a` equal to 1 for a fixed element a

are integer multiples of some positive integer n called the period of a.
(2) If n is a period, so is any divisor of n.
(3) If a', a" have periods n', n" which are relatively prime, then a'a" has

period n'n".
(4) If nl is the lowest common multiple of the periods of elements in

the group, then there is in fact an element of period n, . For if
n t = pagPrv ...
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is the prime factorization of n1, there must be periods n containing
p", qP, ry, ... as factors, and hence by (2), elements a', a", a"', ... of
periods p", qP, ry, ... respectively. Then by (3) the element a' a"a"'
has period p"gFry = n 1.

It will be seen from the proof which follows that Kronecker is implicitly
using coset decompositions and coset representatives, however, the direct-
ness of his argument is more obvious if these terms are not mentioned.

5.2.2 Kronecker's Theorem

If A is a finite abelian group, then A = Al x A2 x . . x AS, where A1, A2,...
are cyclic groups of orders n1, n2, ... and each n1 1 is a divisor of ni.

Let n1 denote, as in (4), the maximal period among elements of A. Then
n1 is a multiple of the period of each element a, and we have

a", = 1

for an arbitrary a e A.
If a1 is an element with period n1, we shall call elements a', a" equivalent

relative to a1 if
a' al = a" for some k.

This is indeed an equivalence relation, and the equivalence classes form
a finite abelian group under the obvious multiplication (it is, of course, the
quotient of A by the cyclic subgroup generated by a1). The properties (1)--(4)
relativize to corresponding properties of equivalence. In particular, there is
an equivalence class of maximal period n2, which means that for any repre-
sentative a* of the class, (a*)n2 is the least of its powers equivalent to 1.
Since (a*)nI equals 1 and is a fortiori equivalent to it, the relativized version
of (1) says that n2 is a divisor of n 1.

Now if (a*)72 = a; and one raises both sides to the power n1/n2 then
1 = alni/nz

so when k/n2 is set equal to m we have
aInn i

1

from which it follows, since n1 is the period of a1, that m is an integer.
The equation

a a'n=a*2 1

then defines an element a2 equivalent to a* whose n2th power is not merely
equivalent to 1, but equal to it.
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We now call elements a', a" equivalent relative to a,, a2 if
a'aia2 = a" for some h, k

and similarly obtain a group of equivalence classes whose maximal period,
n3, divides n2, and a representative a3 of the class of maximal period such
that a3; = 1.

The procedure terminates when we have a set of elements a,, a2, ... , as
such that any a is equivalent to 1 relative to a,, a2, ... , as, that is, when any
a is expressible as

a = a l' a2x ... ass (0 < hi < ni).
It also follows that the expression is unique, for the equivalence classes
relative to a1, ... , as _ , must constitute a cyclic group with as as a representa-
tive generator. An element a is therefore uniquely determined by the in-
tegers h,, ..., h,-,, which determine it relative to an equivalence class
representative, and the integer hs which determines the equivalence class
representative itself, ass.

Thus A is the direct product A, x A2 x x AS, where Ai is the cyclic
group generated by at, and the order ni of A; is such that n;+, divides ni.

Note that the orders n,, n2, ..., ns of factors in a representation of A as a
direct product of cyclic groups are uniquely determined by the require-
ment that ni+, divides ni. For in a group A, x A2 x x AS in which the
orders ni of Ai have this property, n1 is indeed the maximal period of an
element, n2 the maximal period in the quotient modulo the subgroup
generated by an element of order n,, etc.

One can actually factor further into cyclic subgroups whose orders are
prime powers-for example, the cyclic group of order 6 is the direct product
of cyclic groups of orders 2 and 3 -however, the numbers n 1, n2 , ... , ns
are those most suitable to describe the "torsion" in the group. If A is the
first homology group of a complex, n, represents the maximum number of
times a nonbounding curve has to be traversed before it becomes bounding,
n2 is the maximum when curves are considered "relative to a curve of period
n,," and so on.

5.2.3 A Factorization Theorem

If A is an abelian group and B a subgroup such that A/B is free abelian, then
AA=Bx -
B

(Note: in what follows we understand "free generators," "nontrivial relation,"
and so on in the context of abelian groups. For example, a,a2 al 'az ' = 1 is
now a trivial relation.)
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Let x1, x2, ... be free generators of A/B and for each i choose a ci e A
such that 0(ci) = xi, where 0: A -+ A/B is the canonical homomorphism.
Then the ci freely generate a subgroup C of A, isomorphic to A/B, since any
nontrivial relation between the ci's would yield the corresponding relation
between the xi's under the map 0.

It follows that any a e A has a unique factorization a = bc, where b c- B,
c E C. For c must satisfy 4(c) = 4(a), and there is exactly one such c by the
construction and freeness of C; and b is then uniquely determined as ac'.
The latter is indeed an element of B, since 4(ac-') = O(a)(/(c))-'.

Now if a, -= b1c1, a2 = b2c2 we have a1a2 = (b,b2)(c1c2), so multiplica-
tion takes place componentwise on the B and C factors. In other words,
A = B x C or B x A/B, since C is isomorphic to A/B.

5.2.4 Free Abelian Groups of Finite Rank

If Z" denotes the abelian group freely generated by a,, ... , a, then any set
of, free generators for Z" has n elements. Also, any subgroup of Z" is free abelian,
with < n generators.

The typical element a = a,'a2 a,' of Z" can be represented by the
integer vector a = (k1, k2, ..., k") and the product operation in Z" then
corresponds to vector sum.

By elementary linear algebra, a set of > n such vectors is linearly dependent
with rational, and hence in fact integer, coefficients (multiplying through by
a common denominator). This means there is a nontrivial relation between
any set of > n members of Z"; so any set of free generators has < n members.
Conversely, if b1, ..., b," generate Z", then the elements a,, ..., a" in par-
ticular must be products of them. In other words, the vectors a1, ..., a" are
linear combinations of the b 1, ... , bm . Since a 1, ... , a,, are linearly indepen-
dent, m >- n by the same argument. Hence m = n.

The number n is the number of factors in the decomposition of Z" into
the direct product of infinite cyclic groups, so we have now shown that this
decomposition is unique.

To show the second part of the theorem, suppose that C is a subgroup
of Z. We observe that a subgroup of Z' is certainly free, on < one generator,
and continue by induction on n as follows.

The projection 7r: Z" -+ Z' which sends each ai to a, maps C onto a free
subgroup C1 of V. Then by the factorization theorem

C = B1 x C1,

where B1 is the kernel of the projection C - C1, that is, a subgroup of the
free abelian group generated by a2,..., a". By induction we can assume that
B1 is free abelian on <n - 1 generators, that is, the direct product of <n - 1
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infinite cyclic groups, and then C is the direct product of <n infinite cyclic
groups.

EXERCISE 5.2.4.1. Prove that finitely generated abelian groups are finitely presented.
(Of course, this result will follow from the structure theorem, but it is of interest to see
what it really depends on.)

5.2.5 Torsion-free Abelian Groups

An abelian group A is called torsion free if it has no elements of finite order.
A finitely-generated torsion free abelian group is free.

Let a1, ..., an be a maximal subset of the generators of A which generate
freely. Then for each i > n the generator a, enters a nontrivial relation with
a,, ... , an, which we may assume to be

w(a1, ... , an) = ak,

Thus if B denotes the free abelian group generated by al, ..., an we have
ak, E B for each i > n. Let k be a common multiple of the k;'s and consider
the homomorphism 0: A -* B which sends each a; to ak. Since no a; has
finite order the kernel is trivial and hence we have a monomorphism. The
image subgroup of B is free by 5.2.4, so A itself is free.

We mention in passing that an infinitely-generated torsion-free abelian
group may not be free-an interesting example is the group D of rationals
of the form p/2q (p, q integers) under addition. Exercise 5.2.5.1 develops
some of the properties of this group, which actually occurs in topology (see
Rolfsen 1976, p. 186).

For the theory of infinitely-generated abelian groups, which is quite well
developed, see Fuchs 1960.

EXERCISE 5.2.5.1. (1) Show that any finite set of elements p1/2q1, ... , of D with q, <
< qn generate an infinite cyclic subgroup containing no element < 1/2q^. Deduce

that D is not finitely generated and that any finite set of > 2 elements satisfy a nontrivial
relation.

(2) Show that D has a presentation
2 z 2 ..\.<a,,a2,a3,...;a, =a2,a2=a3,a3 a4,

(3) Show that every proper subgroup { 1 } and containing the element a, of D
is infinite cyclic.

(4) Show that D/Z, the result of adding the relation a, = 1 to D, is an infinite group
whose proper subgroups are all finite cyclic.

EXERCISE 5.2.5.2. Show that the positive rationals under multiplication constitute an
infinitely generated free abelian group.
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5.2.6 The Torsion Subgroup
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Suppose A is any finitely-generated abelian group, and let T be the subgroup
of elements of finite order. T is called the torsion subgroup. Then T is a
finite abelian group and A = F x T where F is a free abelian group.

Let Zk be the free abelian group on the generators of A and let B be the
subgroup of Z' which maps onto T under the canonical homomorphism
0: Z' -). A. By 5.2.4, B is finitely generated, so the images of its generators
give a finite set of generators for T. But a finitely generated abelian group in
which every element has finite order is obviously finite, hence T is a finite
abelian group.

Now consider the coset decomposition of A modulo T. If any coset is
of order m this means x' e T for any of its representatives x. But then xm is
of finite order, hence so is x and the coset in question can only be T itself.
Thus A/T is torsion-free and hence free by 5.2.5.

It then follows by the factorization theorem that A = F x T where F
is the free abelian group A/T. El

The proof of the structure theorem is now complete. We have decomposed
the given finitely generated abelian group A into the direct product of a free
abelian group A/T and a finite abelian group T. This decomposition is
unique because in any abelian group F x T, where F is free and T is finite the
torsion subgroup is obviously T. The free abelian group A/T decomposes
uniquely into the direct product of n infinite cyclic groups by 5.2.4, while
T decomposes uniquely into cyclic groups of orders n1, ..., n5, where nip,
divides ni, by Kronecker's theorem and the remark following it in 5.2.2.
A is therefore uniquely determined by the number n (Betti number) and
the numbers n,, ..., ns (torsion coefficients).

5.2.7 Computability of the Betti Number and Torsion Coefficients

The above proof of the structure theorem does not make clear how to
actually compute the decomposition of a given finitely-generated abelian
group A into cyclic factors. The proof using matrices is quite explicit in
this respect (see for example Cairns 1961), however, we can also obtain an
algorithm for computing the decomposition from its mere existence by the
following cheap trick:

Given a presentation of A, systematically apply all possible Tietze trans-
formations until an abelian presentation of the form

a,,...,an,b1,...,bs;b n1l,...,b ttSs>,

where each ni+ 1 divides ni, is obtained. Then n is the Betti number of A
and n1, ..., ns are its torsion coefficients. The structure theorem implies the
existence of such a presentation, so we must be able to reach it in a finite


